Contributors xiii
Preface xiv
1 Quality control and regulation 1
C.J. MOORES
1.1 Introduction 1
1.2 The quality of medicines 2
1.2.1 The meaning of quality 2
1.2.2 Medicines are special 3
1.2.3 End-product testing 3
1.3 General quality system requirements 4
1.3.1 ISO 9000 6
1.3.2 UKAS 7
1.3.3 NAMAS 8
1.4 Good laboratory practice (GLP) 9
1.4.1 Organisation for economic co-operation and
development (OECD) GLP guide 9
1.4.2 Principles of GLP 10
1.5 Good manufacturing practice (GMP) 11
1.5.1 USA GMP regulations 11
1.5.2 EU/UK GMP requirements 13
1.5.3 USA/EU GMP differences 14
1.5.4 International GMPs 16
1.6 International harmonisation of quality standards 16
1.7 Quality control, quality assurance and regulatory filings 17
1.7.1 Pre-clinical development 18
1.7.2 Early phase development (Phases I/II) 19
1.7.3 Late phase development (Phase III) 20
1.7.4 Commercial manufacture 20
1.8 Regulatory inspection key areas 21
1.8.1 Inspection of analytical test facilities 21
1.8.2 Computerised systems (21 CFR part 11) 24
1.8.3 Out-of-specification (OOS) test results 26
1.8.4 System audits 28
1.9 Conclusions and the future of regulatory scrutiny 29
References 30

vi CONTENTS
2 Development of achiral separation methods in pharmaceutical
analysis 31
GEORGE N. OKAFO and JOHN K. ROBERTS
2.1 Introduction 31
2.1.1 Historical perspective of separation methods
and their uses in pharmaceutical analysis 32
2.1.2 Regulatory considerations for separation methods
in pharmaceutical analysis 34

2.2 General guidance for method development in separation
sciences 34
2.2.1 Separation goals/objectives 35
2.2.2 Nature of the sample 38
2.2.3 Choosing the separation technique 39
2.2.4 Sample pre-treatment and detection 41
2.2.5 Developing the separation 43
2.3 High performance liquid chromatography (HPLC) 44
2.3.1 Brief historical perspective of HPLC 44
2.3.2 Different modes of HPLC 44
2.3.3 Key developments in HPLC 45
2.3.3.1 Stationary phase and column technology 45
2.3.3.2 Instrumentation 47
2.3.3.3 Microcolumn liquid chromatography 48
2.3.3.4 Combined HPLC methods 48
2.4 Gas chromatography (GC) 49
2.4.1 Brief historical perspective 49
2.4.2 GC in pharmaceutical analysis 50
2.4.3 Key developments in GC 52
2.4.3.1 Sensitivity enhancement with large
volume injection 52
2.4.3.2 Thermally labile samples 52
2.4.3.3 Analytes in complex matrices 52
2.4.3.4 Detection systems 53
2.4.3.5 Efficiency increases in GC 53
2.4.3.6 Automation 54
2.5 Capillary electrophoretic techniques 54
2.5.1 Brief historical perspective 54
2.5.2 Developments in detection modes in CE 55
2.5.3 Different modes and method development
options in CE 55
2.5.3.1 Capillary zone electrophoresis 55
2.5.3.2 Micellar electrokinetic chromatography 57
2.5.3.3 Microemulsion electrokinetic chromatography 57
2.5.3.4 Capillary electrochromatography 57

CONTENTS vii
2.6 Other separation techniques 58
2.6.1 Thin layer chromatography 58
2.6.2 Supercritical fluid chromatography 59
2.7 Hyphenated separation techniques 59
2.8 Use of automated approaches to method development
in chromatography 61
2.8.1 Separation optimisation programmes 61
2.8.2 Column switching devices 63
2.9 Use of chemometric approaches to method development 66
Abbreviations 67
References 68
3 Chiral analysis of pharmaceuticals 74
W. JOHN LOUGH
3.1 Significance of chirality in pharmaceutical R&D 74
3.2 Evolution of methodologies for chiral resolution 79
3.3 Recent developments in commercial CSP for LC 87
3.3.1 Polysaccharide-based CSP 87
3.3.2 Macrocyclic antibiotic CSP 88
3.3.3 Synthetic multiple-interaction CSP 90
3.4 Role of historical CSP 92
3.5 Chiral drug bioanalysis 95
3.6 Preparative chiral separations 96
3.7 Present and future perspectives 98
3.7.1 Alternatives to chiral LC 98
3.7.2 Fit for intended purpose? 101
3.7.3 The future 102
Ancillary reading 103
References 103
Commercial literature 104
4 Nuclear magnetic resonance spectroscopy in pharmaceutical
analysis 105
RICHARD J. SMITH and ANDREW J. EDWARDS
4.1 Introduction 105
4.2 Structure elucidation 106
4.2.1 Background and historical perspective 106
4.2.2 The move to higher fields 107
4.2.3 Modern 1

H NMR experiments 112
4.2.4 Nuclei other than the proton 115
4.2.4.1 13C 117
4.2.4.2 19F 119

viii CONTENTS

4.2.4.3 31P 119
4.2.4.4 17O 122
4.2.4.5 15N 122
4.2.5 Computer-assisted structure determination 125
4.2.5.1 Computer-assisted interpretation 125
4.2.5.2 Computer-assisted structure elucidation 126
4.3 On-line separations 127
4.3.1 LC/NMR 127
4.3.1.1 Chromatographic considerations 128
4.3.1.2 NMR mode 130
4.3.1.3 Solvent suppression in LC/NMR 135
4.3.1.4 Applications of LC/NMR 135
4.3.1.5 LC/NMR/MS 137
4.3.1.6 Capillary LC/NMR 137
4.3.2 Hyphenation to other separation techniques 138
4.4 Quantitation 139
4.4.1 The basics of quantitation 139
4.4.2 Optimising the experimental parameters 140
4.4.3 Quantitative impurity determinations 144
4.4.4 Summary of experimental considerations 145
4.4.5 Method validation 145
4.5 Solid state NMR 148
4.5.1 Introduction 148
4.5.2 Basic theory of solid state NMR 148
4.5.3 Methods of assignment of solid state NMR spectra 150
4.5.3.1 One-dimensional editing methods 150
4.5.3.2 Two-dimensional solid state methods 151
4.5.4 Distance measurements in the solid state – recoupling 152
4.5.4.1 Heteronuclear recoupling 152
4.5.4.2 Homonuclear recoupling 153
4.5.5 Application of solid state NMR
to pharmaceuticals 153
Acknowledgements 157
References 157
5 Mass spectrometry in pharmaceutical analysis 165
NEVILLE HASKINS
5.1 Introduction 165
5.2 Mass spectrometry 166
5.2.1 Sample introduction systems 167
5.2.2 Ionisation techniques 168
5.2.2.1 Electron ionisation 168
5.2.2.2 Chemical ionisation 169

CONTENTS ix
5.2.2.3 Electrospray 172
5.2.2.4 Nanospray 173
5.2.2.5 Atmospheric pressure chemical ionisation (APCI) 173
5.2.3 Analysers 173
5.2.3.1 Sectors 173
5.2.3.2 Quadrupole analysers 174
5.2.3.3 Quadrupole ion traps 175
5.2.3.4 Time of flight analysers 176
5.2.3.5 Ion cyclotron resonance mass
spectrometers 177
5.2.3.6 Hybrid instruments 181
5.2.4 Ion detection systems 182
5.2.4.1 Conversion dynode and electron multiplier 182
5.2.4.2 Conversion dynode and photon multipliers 183
5.2.5 Data acquisition and processing 183
5.3 Strategies for structural elucidation 183
5.3.1 Determination of molecular weight 184
5.3.2 Collisionally induced decomposition and MSn

186
5.3.3 Accurate mass measurement 191
5.4 Structural confirmation 192
5.4.1 Library searches 193
5.4.2 Using MSn

techniques 194
5.4.3 Process monitoring 195
5.5 Quantitation 195
5.5.1 Development of an assay 196
5.5.2 The calibration process 197
5.5.3 Use of stable isotopically labelled substance 198
5.5.4 Use of double labelling 198
5.6 Using the data system 199
5.6.1 Automation 199
5.6.2 Data processing 201
5.6.3 Data mining 201
References 202
6 Vibrational spectroscopy in pharmaceutical analysis 203
CLARE L. ANDERTON
6.1 Introduction 203
6.1.1 Molecular motion 203
6.1.2 Infrared spectroscopy 204
6.1.2.1 Instrumentation for infrared spectroscopy 204
6.1.2.2 Sample preparation for infrared
spectroscopy 204

x CONTENTS
6.1.3 Raman spectroscopy 205
6.1.3.1 Instrumentation for Raman spectroscopy 208
6.1.3.2 Sample preparation for Raman spectroscopy 209
6.1.4 Applications 210
6.2 Vibrational spectroscopy to investigate molecular structure 211
6.2.1 Introduction 211
6.2.2 Techniques in structural elucidation and specialist
applications 211
6.2.2.1 Tautomerism 211
6.2.2.2 Hydrogen bonding 211
6.2.2.3 Chirality 212
6.2.2.4 Contaminant analysis 212
6.2.2.5 Products from combinatorial chemistry 213
6.2.2.6 Theoretical calculations 214
6.2.3 Routine chemical identification 216
6.3 Vibrational spectroscopy of polymorphs, hydrates
and solvates 216
6.3.1 Introduction 216
6.3.2 Identifying structural differences between
solid-state forms 218
6.3.2.1 Polymorphs 218
6.3.2.2 Hydrates and solvates 220
6.3.2.3 Amorphous material 222
6.3.3 Quantifying solid-state forms in drug substance 224
6.3.4 Identifying the solid-state form in formulated
product 226
6.4 Vibrational spectroscopy for in situ characterisation 228
6.4.1 Investigating solid phase transformations 228
6.4.1.1 Variable temperature spectroscopy 228
6.4.1.2 Combining spectroscopy with other solid-state
techniques 231
6.4.2 Monitoring chemical reactions and processes 231
6.4.3 Chromatography detection 234
6.5 Summary 236
Acknowledgements 236
References 236
7 Solid-state analysis and polymorphism 240
ULRICH J. GRIESSER and JOSEPH G. STOWELL
7.1 Introduction 240
7.2 Solid-state properties of drug compounds 242
7.2.1 Determinant levels of solid-state properties 242

CONTENTS xi
7.2.2 Types and properties of pharmaceutical solids 244
7.2.2.1 Crystalline solids 247
7.2.2.2 Amorphous solids 250
7.2.2.3 Regulatory aspects and quality control 251
7.3 Methods of solid-state analysis 253
7.3.1 X-ray diffraction and crystallography 254
7.3.2 Spectroscopy 260
7.3.2.1 Ultraviolet-visible diffuse reflectance
spectroscopy 260
7.3.2.2 Infrared spectroscopy 261
7.3.2.3 Raman spectroscopy 266
7.3.2.4 Solid-state NMR 269
7.3.3 Thermal analysis and calorimetry 273
7.3.3.1 Thermomicroscopy (hot-stage microscopy) 275
7.3.3.2 Differential thermal analysis
and differential scanning calorimetry 276
7.3.3.3 Thermogravimetry 281
7.3.3.4 Thermomechanical analysis 282
7.3.3.5 Dielectric analysis 283
7.3.3.6 Microcalorimetry 283
7.3.4 Vapour pressure determination of solids 283
7.3.5 Micromeritic measurements 284
7.3.5.1 Particle-size analysis 284
7.3.5.2 Particle shape 286
7.3.5.3 Specific surface area 287
7.3.5.4 Porosity 287
7.3.5.5 Density 287
7.3.6 Other technologies 288
7.3.6.1 Atomic force microscopy 288
7.4 Summary 289
References 289
8 Microscopy and imaging in pharmaceutical analysis 295
ROBERT A. CARLTON
8.1 Introduction 295
8.2 Solid-state analysis 295
8.2.1 Early stage solid-state analysis (polymorph discovery) 297
8.2.1.1 Optical crystallography 298
8.2.1.2 Solvent recrystallization experiments 298
8.2.1.3 Thermal microscopy 300
8.2.2 Late stage solid-state analysis (polymorph relationships) 304
8.2.3 Summary 307

xii CONTENTS
8.3 Particle size and morphology 307
8.3.1 Particle morphology 309
8.3.2 Particle size analysis/image analysis 313
8.3.3 Summary 317
8.4 Contaminant identification 319
8.5 Conclusion 321
References 322
9 Process analysis in the pharmaceutical industry 324
MARTIN WARMAN and STEVE HAMMOND
9.1 Introduction 324
9.2 Pharmaceutical manufacturing 325
9.2.1 Drug substance manufacture 326
9.2.1.1 Raw material testing 326
9.2.1.2 Reaction mixture 328
9.2.1.3 Reaction monitoring 328
9.2.1.4 Crystallisation monitoring 338
9.2.1.5 Dryer monitoring 340
9.2.1.6 Monitoring the milling process 341
9.2.1.7 Cleaning monitoring 343
9.2.2 Drug product manufacturing 344
9.2.2.1 Raw material monitoring 345
9.2.2.2 Formulation monitoring 348
9.2.2.3 Tablet cores 353
9.2.2.4 Tablet coating 355
9.2.2.5 Packaging 355
9.3 Conclusions 355
References 356
Index 357

 

DOWNLOAD